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The present work addresses the direct and inverse problems for convective heat transfer with incom-
pressible laminar gas flow in micro-channels, within the range of validity of the slip-flow regime. The
direct problem analysis combines the classical integral transform method and the generalized integral
transform technique (GITT), by analytically solving the two-dimensional steady-state convection problem
and finding a hybrid numerical-analytical solution for the required eigenvalue problem. The inverse
problem analysis makes use of the accuracy and robustness of the direct problem solution and focus on the
simultaneous identification of the momentum and thermal accommodation coefficients, related to gas
flow and heat transfer within micro-channels, besides the usually unknown boundary condition param-
eters, here represented by the external Biot number. The inverse analysis is based on the availability solely
of temperature measurements at the channel external wall, along its length, as obtained for instance via
infrared camera thermography. A Bayesian inference approach is adopted in the solution of the identifi-
cation problem based on the Monte Carlo Markov Chain method (MCMC) and the Metropolis-Hastings
sampling algorithm. A typical example of slip flow in parallel-plates micro-channel is selected to illustrate
both the direct and inverse problems solution approaches.

© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

The analysis of internal flows in the slip-flow regime gained an
important role along the last two decades in connection with micro-
electromechanical systems (MEMS) applications and in the thermal
control of microelectronics, as reviewed in different sources [1-5].
Several steady-state incompressible flow situations in laminar
regime within simple geometries, such as circular micro-tubes and
parallel-plate micro-channels, developed for the slip-flow regime,
have been widely employed in the heat transfer analysis of micro-
systems [6,7]. Also recently in [8—12], the analytical contributions
were directed towards more general steady and transient problem
formulations, including viscous dissipation, axial diffusion in the
fluid and three-dimensional flow geometries.

In this context, the first goal of this paper is thus to illustrate the
results obtained from a fairly general hybrid numerical-analytical
solution for temperature distributions in a fluid flowing through
two- or three-dimensional micro-channels, taking into account the
velocity slip and temperature jump at the walls surfaces. For this
purpose, a flexible approach was employed [13], based on formal
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solutions of the energy equation as obtained via the classical inte-
gral transform method [14], in association with the Generalized
Integral Transform Technique, GITT [ 15—18], which was used for the
solution of the required eigenvalue problem [19—21]. This method
is here applied for illustration purposes in the integral trans-
formation of the energy equation for thermally developing flow
within parallel-plates micro-channels under the slip-flow regime.
This combination of solution methodologies provides a very effec-
tive eigenfunction expansion solution, through the fast converging
analytical representation in all the space coordinates, together with
a flexible and reliable numerical-analytical approach for the Sturm-
Liouville eigenvalue problem solution.

The accuracy of such analytic-type solutions for the direct forced
convection problem in micro-channels are however dependent on the
also accurate determination of the momentum and thermal accom-
modation coefficients, as required by the slip and temperature jump
boundary conditions inherent to the slip-flow model that accounts for
non-continuum effects at the fluid—surface interactions. Fundamental
experimental work on rarefied gas dynamics have offered measure-
ments of the tangential momentum accommodation coefficient,
requiring, for instance, high vacuum and molecular beams impinging
on carefully prepared substrates, such as recently reviewed in [22], but
very few results are available for the actual conditions of the flow
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Nomenclature

Bi Biot number

d(x) linear dissipation operator coefficient, eq. (1a)
fix) inlet condition, eq. (1b)

1 number of parameters to be estimated

k(x) diffusion operator coefficient, eq. (1a)

Kn Knudsen number (=1/2y1)

ke fluid thermal conductivity

M number of measurements in inverse analysis
N; normalization integrals

Nu(Z) local Nusselt number

P vector of unknown parameters

P(x,t) equation source term, eq. (1a)

Pr Prandtl number

T temperature (potential)

To channel inlet temperature

T temperature of external environment

U vector of measured temperatures

u(y) velocity field inside channel

Ugy average flow velocity

w(x) transient operator coefficient, eq. (1a)

W(Y) dimensionless velocity profile

w covariance matrix of the measurement errors
X position vector

Y dimensional and dimensionless transversal

coordinate, respectively

V1 half spacing between parallel plates
z,Z dimensional and dimensionless longitudinal
coordinate, respectively

Greek letters
a(x), B(x) boundary condition coefficients, eq. (1c)

o fluid thermal diffusivity

am, @  tangential momentum and thermal accommodation
coefficients

By wall velocity slip coefficient

B¢ temperature jump coefficient, eq. (Ge)

6 boundary condition coefficients ratio, (,/6y

¢(x,t) equation source term, eq. (1a)

A molecular mean free path

An eigenvalue of auxiliary problem

i original problem eigenvalues

Q eigenfunctions of the auxiliary problem

Y eigenfunctions of the original problem

0(Y,Z) dimensionless temperature

(¢} vector of estimated temperatures

Subscripts & Superscripts

in,m order of eigenquantities
integral transform
~ normalized eigenfunction

configuration within micro-channels and their actual bounding walls
[23,24]. The experiments indicate that the tangential momentum
accommodation coefficient generally assumes values between 0.2
and 1.0, with the lower limit being associated with exceptionally
smooth surfaces and the upper limit with very rough or highly oxidized
surfaces [4]. Similar considerations are pertinent to the measurement
of thermal accommodation coefficients [25], where an even more
limited experimental database is available, and apparently no previous
work seems to be available on the identification of this coefficient
in actual heat and fluid flow conditions within specific pressure and
temperature levels pertinent to MEMS applications, and in addition for
actual morphology and finishing of the micro-channel walls.

Thus, we take advantage of the accuracy, robustness and efficiency
of the direct problem solution, to tackle the associated inverse heat
transfer problem analysis [26,27] towards the simultaneous estima-
tion of momentum and thermal accommodation coefficients in micro-
channel flows with velocity slip and temperature jump. A Bayesian
inference approach is adopted in the solution of the identification
problem, based on the Monte Carlo Markov Chain method (MCMC)
and the Metropolis-Hastings algorithm [28—31]. Only simulated
temperature measurements at the external faces of the channel
walls, obtained for instance via infrared thermography [31], are used
in the inverse analysis in order to demonstrate the capabilities of the
proposed approach. A sensitivity analysis allows for the inspection of
the identification problem behavior when the external wall Biot
number is also included among the parameters to be estimated.

2. Analysis
2.1. Direct problem solution

The approach here employed in the direct problem solution for
forced convection in micro-channels, is borrowed from a recent

work on diffusion in heterogeneous media, with arbitrarily space
variable thermophysical properties [13]. In this sense, the dimen-
sionless velocity fields are mathematically equivalent to space
variable thermal capacitances, and the formal solution procedure is
here briefly described.

We consider a general formulation on steady or quasi-steady
state hydrodynamically fully developed and thermally devel-
oping convection, that governs the temperature field T(x, z),
dependent on the position x on the transversal plane and on the
longitudinal coordinate z, defined in the transversal region V
with boundary surface S. The formulation includes the convec-
tion term, the diffusion operator, a linear dissipation term, and an
independent source term [13], as shown in problem (1) below.
The coefficients w(x), k(x), and d(x), are responsible for the
information related to the velocity field, geometry and eventually
even heterogeneity of the medium. The general formulation is
given by the convection-diffusion equation and inlet and
boundary conditions below:

W(X)W = V-k(x)VT(x,z) —d(x)T(x,z)

+P(x,2),xeV,z>0 (1a)

T(x,0) = f(x), xeV,
oT(x,2)
on

The exact solution of problem (1) is obtained with the Classical
Integral Transform Method [14,15], and is written as:

a(X)T(X,z) + B(X)k(x) = ¢(x,z), XeS (1b,c)

Txz) = Y00 (Fie e+ [ g e 7az) 2)
i=1 0
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where the eigenvalues u; and eigenfunctions y;(x), are obtained
from the eigenvalue problem that contains the information about
the velocity field, in the form:

V-kOYi(x) + (kFw(x) - d(x) )%i(x) = 0, xeV (3a)

a0¥i%) + 800k %) — 0, xes (3b)

Also, the other quantities that appear in the exact solution (2)
are computed after solving problem (3), such as:

N; = /w(x)tpiz(x)dv, normalization integrals, (4a)
4

W)
von

fi= / WXV (X)f (X)dv,
%4

Yi(x)

normalization eigenfunctions (4b)

transformed inlet conditions  (4c)

B — ko i)

ax) B |9

g2 — [Px2biodv+ [ 60x2)
v S
transformed source term (4d)

For a general purpose and automatic implementation, it is quite
desirable to employ a flexible computational approach to handle
eigenvalue problems with arbitrarily variable coefficients, such as
problem (3). Thus, the Generalized Integral Transform Technique
(GITT) is here employed in the solution of the Sturm-Liouville
problem (3) via the proposition of a simpler auxiliary eigenvalue
problem, and expansion of the unknown eigenfunctions in terms of
the chosen basis [19]. Also, the variable equation coefficients may
themselves be expanded in terms of known eigenfunctions [13], so
as to allow for a fully analytical implementation of the coefficients
matrices in the transformed system. The equation coefficients of
the auxiliary problem are simpler forms of the original coefficients,
chosen so as to allow for an analytical solution of the auxiliary
problem [13,19]. The boundary conditions types of the original
and auxiliary problems are allowed to be different, in case further
simplification of the auxiliary function is desired. Then, the
resulting algebraic problem can be numerically solved to provide
results for the eigenvalues and eigenvectors, which will be
combined to provide the desired eigenfunctions of the original
eigenvalue problem, as described in further detail in [13].

In order to illustrate both the direct and inverse problems
solutions, we consider the two-dimensional situation of parallel-
plates micro-channels, with steady thermally developing laminar
flow under the slip-flow regime. The fluid is assumed to enter
the channel with a fully developed velocity profile and a uniform
temperature, exchanging heat by convection with the surroundings
with an external heat transfer coefficient that might not be known
a priori in the inverse problem analysis. Thermophysical properties
are assumed to be constant, while axial conduction and viscous
dissipation are neglected.

Although more involved formulations could be handled by the
proposed approach, the direct problem solution is here illustrated
for the parallel-plates channel incompressible flow case, previously
solved in [6,7] for the prescribed wall temperature boundary
condition, and here written in a more general form including the
external wall convection effect:

0(Y,Z) _ 90(Y,2)

)
W(Y) 37 ay2 ,0<Y<1,Z>0 (5a)
0Y,00=1, 0<Y<I1, (5b)
00(Y,2) _0 00(Y,2) _ Bi 61,2), Z>0
Y |v=0 7 dY |v=1 14+2KnBBi 7"

(5¢,d)
where the corresponding dimensionless groups are given by
y-Y.z- azz; (Y,2) = M;

Y1 Uayq To — T
w(y) = Y0 gy g, A (6a—f)
Uay kf ZY1
and,
2—« 2 1
B, = ( t) Y (6g)

ar  (y+1)Pr

is the wall temperature jump coefficient and «; is the thermal
accommodation coefficient, A is the molecular mean free path,
v = cp/cy, while ¢, is specific heat at constant pressure, ¢, specific
heat at constant volume and Pr is the Prandtl number. The
dimensionless velocity profile is given as [6]:

6KnB, +3(1 —Y?)/2

wey) = 1+ 6KnB, (72)
where,
g, — 2-cm) (7)

Om

is the wall velocity slip coefficient and ¢ is the tangential
momentum accommodation coefficient. The ratio of the boundary
conditions coefficients is also of interest, and given as § = f¢/0.

The following correspondence of the forced convection problem
(5) with the general formulation, eqs. (1), is then identified:

z<Z, XY, wx)—W(Y), k(x)—1, dx)—0,
P(XVZ)‘_Ov f(x)ﬁla ¢(x7z)<_.07 (8)

Bi
a(X)<—0forY = 0and 15 2KnB,Bi forY=1, fXx)«<1
The solution of the dimensionless problem (5) is then a special

case from the general solution given in eq. (2), written as [6]:

0.2) = S Fi(vie = with f; — - YL (9a)

i=1 i
where y;(Y) are eigenfunctions of the following Sturm-Liouville

problem, with the corresponding normalization integral and
normalized form of the eigenfunction:

2
d c‘]@(zy) FRWY(Y) =0, 0<Y <1 (10)
()| o dy()| Bi 4
dY |y=o ay |y=1 l+2K1’lﬁt5i¢l(1) (10b.c)
; Y
No= [WEwRmdy () - ‘f\}'ﬁ/z) (11ab)
0 i
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The solution of problem (10) was obtained in [6,7] in terms of the
confluent hypergeometric function, also known as Kummer func-
tion, readily available in the Mathematica system [32]. Here, a more
convenient path for the corresponding inverse problem analysis
was chosen, in light of the intensive computational task required by
the parameters identification algorithm, so as to provide a solution
in terms of simpler functions. Thus, following the ideas in the
Generalized Integral Transform Technique, GITT [13,15,19], the
solution of problem (10) is provided as an eigenfunction expansion
from a simpler eigenvalue problem, that retains the same boundary
conditions of the original problem, but avoids the variable coeffi-
cient corresponding to the dimensionless velocity field, in the form:

d2Qn(Y
—j%l+ﬁ94nzza 0<Y<1 (12a)
don(Y) _ dQn(Y) B Bi
dy |vy—=o 7 dY |y=1 71+T<nﬁtm'9n(1) (12b,c)
which is readily solved as
Bi
Qn(Y)=cos(A,Y), /\ntan(ln):m7 n=12... (13ab)

Once the auxiliary eigenfunctions and eigenvalues have been
obtained, we may express the desired eigenfunction of the original
problem as an expansion of these simpler functions:

YY) = i OQn(Y)Yin, inverse (14a)
n=1
1
Vin :/ Qn(Y)¥;(Y)dY, transform (14b)
’ 0

The integral transformation of the original eigenvalue problem
is then performed by employing the operator f(} Qn(Y) — dY, over
eq. (10a), which results in the following algebraic eigenvalue
problem for the original problem eigenvalues and corresponding
eigenvectors:

(A-u’B)Y =0 (15a)

U= {Fnm); B={Bum}. Bam= / W(Y)@n(Y)2m(Y)dY (15b,c)
0

Anm = Aién,m, where 6y m = 1, forn = m, or

Onm = 0, forn#m (15d)

The algebraic problem (15) can be numerically solved to provide
results for the eigenvalues u? and eigenvectors ¢ from this matrix
eigenvalue problem analysis [32] which will be combined within
the inverse formula (14a) to provide the desired eigenfunctions of
the original eigenvalue problem.

The fluid temperature along the wall is then directly computed
from the inverse formula as:

=)

S fii(1)e iz

0(1,2) = (16a)

and the corresponding temperature jump is accounted for so as to
provide the temperature distribution at the wall itself:

1

w?) =17 2KnBif,

0(1,2) (16b)
The average temperature and the local Nusselt number based on
the wall temperature at the interface, along the channel length, are

then determined from:

0u(Z) = f: (i 1) e Hi? (16¢)

i( ]>)e wz

Nu(Z) = (16d)

av(Z) — bw(2)

2.2. Inverse problem solution

A variety of techniques is nowadays available for the solution of
inverse problems [26,27]. However, one common approach relies
on the minimization of an objective function that generally involves
the squared difference between measured and estimated variables,
like the least-squares norm, as well as some kind of regularization
term. Despite the fact that the minimization of the least-squares
norm is indiscriminately used, it only yields maximum likelihood
estimates if the following statistical hypotheses are valid: the errors
in the measured variables are additive, uncorrelated, normally
distributed, with zero mean and known constant standard devia-
tion; only the measured variables appearing in the objective func-
tion contain errors; and there is no prior information regarding the
values and uncertainties of the unknown parameters.

Although very popular and useful in many situations, the mini-
mization of the least-squares norm is a non-Bayesian estimator.
A Bayesian estimator [28] is basically concerned with the analysis
of the posterior probability density, which is the conditional prob-
ability of the parameters given the measurements, while the
likelihood is the conditional probability of the measurements given
the parameters. If we assume the parameters and the measurement
errors to be independent Gaussian random variables, with known
means and covariance matrices, and that the measurement
errors are additive, a closed form expression can be derived for
the posterior probability density. In this case, the estimator that
maximizes the posterior probability density can be recast in the
form of a minimization problem involving the maximum a posteri-
ori objective function. On the other hand, if different prior proba-
bility densities are assumed for the parameters, the posterior
probability distribution may not allow an analytical treatment. In
this case, Markov Chain Monte Carlo (MCMC) methods are used to
draw samples of all possible parameters, so that inference on the
posterior probability becomes inference on the samples. In this
work, we illustrate the use of Bayesian techniques for the estimation
of parameters in micro-scale forced convection problems, via
MCMC methods [28—31], as applied to the simultaneous identifi-
cation of the momentum and thermal accommodation coefficients
in slip-flow modeling. The Metropolis-Hastings algorithm is
employed for the sampling procedure, implemented in the Mathe-
matica platform [32].

Therefore, the unknown parameters in our formulation are
given by:

" = [8,.B:.Bi (17)

Such unknown parameters were estimated in this work by using
a Bayesian approach, as now described. Bayes' theorem can be
stated as [28—30]:

m(P)m(U|P)

Tposterior(P) = T(P|U) = U

(18)
where mposterior(P) is the posterior probability density, that is, the
conditional probability of the parameters P given the measure-
ments U; 7(P) is the prior density, that is, a statistical model for the
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Results for the local Nusselt number, Nu(Z), for the parallel-plates case with Kn 8, = 0.1 and = 1: Comparison against Ref. [6] for prescribed wall temperature (with asterisk),

Bi = «, and reference results for Bi = 1.

Bi=w Bi = 1.0

z Nu(z) z Nu(z) z Nu(Z) z Nu(z)
0.01 2.70290 2.70289" 0.06 1.83608 1.83608" 0.01 2.81057 0.06 1.96128
0.02 2.33112 2.33111° 0.07 1.78071 1.78071" 0.02 2.45481 0.07 1.90338
0.03 2.13091 2.13090" 0.08 1.73627 1.73627" 0.03 2.25900 0.08 1.85615
0.04 2.00027 2.00027" 0.09 1.69996 1.69996" 0.04 2.12882 0.09 1.81694
0.05 1.90676 1.90676" 0.1 1.66993 1.66992* 0.05 2.03406 0.1 1.78394

" Corresponds to results of Ref. [6].

information about the unknown parameters prior to the measure-
ments; w(U|P) is the likelihood function, which gives the relative
probability density (loosely speaking, relative probability) of
different measurement outcomes U with a fixed P, and #(U) is the
marginal probability density of the measurements, which plays the
role of a normalizing constant.

In this work we assume that the measurement errors are Gaussian
random variables, with known (modeled) means and covariances,
and that the measurement errors are additive and independent of the
unknowns. With these hypotheses, the likelihood function can be
expressed as [28—30]:

m(UP) = (2m) MW exp{ - HU-O(P) W [U-O(P) |
(19)

where M is the number of measurements, W is the covariance
matrix of the measurement errors and ®(P) is the solution of the
direct problem obtained with the vector of parameters P. We note
that parameters estimated through the maximization of eq. (19) are
referred to as maximum likelihood estimates [26].

The unknown parameters in this study were estimated by using
the Metropolis-Hastings algorithm for the Markov Chain Monte
Carlo (MCMC) method [28—30], as described below. The imple-
mentation of the Metropolis-Hastings algorithm starts with the
selection of a jumping distribution p(P*P{~1)) which is used to
draw a new candidate state P*, given the current state U~V of the
Markov chain. Once the jumping distribution has been selected, the
Metropolis-Hastings sampling algorithm can be implemented by
repeating the following steps:

1. Sample a candidate point P* from a jumping distribution
p(P*p(- 1),
2. Calculate the acceptance factor

m(P*U)p(P 1 P")

o =min|1 -
TC(P(F]”U)[)(P*,P(F]))

(20)

3. Generate a random value u which is uniformly distributed
on [0,1].

4. If u <a, set P* = P*; otherwise, set Pt = P(t=1),

5. Return to step 1 in order to generate the sequence
(P, P2, .., P").

In this way, a sequence is generated to represent the posterior
distribution and inference on this distribution is obtained from
inference on the samples {P', P?, ..., P"}. We note that values of P!
must be ignored until the chain has converged to equilibrium
(the burn in period). For more details on theoretical aspects of the
Metropolis-Hastings algorithm and MCMC methods, the reader
should consult references [28—31].

3. Results and discussion

The direct problem solution is first validated by direct compar-
ison with the benchmark results provided in [6], as illustrated in
Table 1, for the case of parallel-plates under prescribed uniform
wall temperature (Bi = « ). The results in [6] were obtained from
the classical integral transform method as well, but utilizing the
exact solution of the related eigenvalue problem in terms of
confluent hypergeometric functions, as obtained from a symbolic
computation platform [32]. The numerical results for the local
Nusselt number along the channel length obtained from the two
approaches are practically coincident to the six significant digits
presented. The Nusselt number results for the case of Bi = 1 here
computed are also presented for reference purposes.

Next, the inverse problem solution is illustrated, by adopting the
following typical values of the governing parameters as indicated in

a Bi=0.1, 1, and 10

det[JT7]

40

30 +

20 +

10 |

e’
V.
4 n _I_ _ —— — — — M
200 400 600 800 1000

b Bv, Bt, and Bi

—-0.05
-0.10
-0.15
-0.20
-0.25

-0.30

Fig.1. (a) Influence of Biot number on the sensivity matrix determinant in terms of the
number of measurements along the channel for the simultaneous estimation of the
three parameters (Bi = 0.1, solid line; Bi = 1, short dashes; Bi = 10, long dashes).
(b) Comparison of reduced sensitivity coefficients in terms of the number of
measurements along the channel for the three parameters with Bi = 1 (8, in short
dashes, §; in solid line, Bi in long dashes).
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Table 2

Estimated parameters values with 50,000 states in Markov chains (neglecting first
10,000 states for the chains burn in) and the corresponding 95% confidence intervals
for the base case.

Parameter Exact Initial Interval Estimated Min. with 95% Max. with 95%

By 15 3 [1,5] 1.518 1.308 1.789
Be 20 3 [1,5] 2.010 1.876 2.144
Bi 1.0 5.05 [0.1,10] 1.000 0.996 1.003

ref. [24], B, = 1.5, f; = 2.0, Kn = 0.025, and Bi = 1.0. Only wall
temperature measurements, obtained from simulated data as
computed from eq. (16b), are employed in this work. A total of 1000
uniformly distributed points along the dimensionless channel
length, Zr = 5, was initially adopted. The simulated measurements
were considered normally distributed with averages at the simu-
lated values and 1% standard deviation. They were obtained with
50 terms in the eigenfunction expansions, while the direct problem
solution within the inverse problem procedure was handled with
20 terms only, in order to avoid the so called inverse crime [28].

Before addressing the estimation of the unknown parameters,
the behavior of the determinant of the information matrix J' J
[26,27] was analyzed in order to inspect the influence of the
parameters to be estimated in the solution of the inverse problem.
The sensitivity matrix J is defined as:

T, oT; oTy oTy
oP; 0P, 0P3 oP;
o’ )] o, L L T,
0Ty 0Ty 0Ty 0Ty
9P, 0P, oPs Py

The sensitivity coefficients J; = 0T;/dP; give the sensitivity of T;
(solution of the direct problem) with respect to changes in the
parameter P;. A small value of the magnitude of J; indicates that large
changes in P; yield small changes in T;. It can be said that the esti-
mation of the parameter P; is extremely difficult in such cases,
because basically the same value for T; would be obtained for a wide

5
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range of values of P;. In fact, when the sensitivity coefficients are
small, [J'J| =0 the inverse problem is ill-conditioned. It can also be
shown that |J7)| is null if any column of ] can be expressed as a linear
combination of other columns [26]. Therefore, it is desirable to have
linearly-independent sensitivity coefficients J; with large magni-
tudes, so that the parameter estimation problem is not very sensitive
to measurement errors and accurate estimates of the parameters can
be obtained. The comparison of the magnitude of the sensitivity
coefficients, as well as the analysis of possible linear dependence, is
more easily performed by using the reduced sensitivity coefficients
instead of the original ones. The reduced sensitivity coefficients are
obtained by multiplying the original sensitivity coefficients, Jj;, by the
parameters that they refer to. Therefore, they have units of the
measured variables, which are used as a basis of comparison.

Based on possible experimental setups, we will consider three
different orders of magnitude of the Biot number (Bi = 0.1,1 and 10)
for the analysis of the determinant of the information matrix
(Fig. 1a). Clearly, by increasing the Biot number to Bi = 10, markedly
decreases the value of the determinant. Also, for the two lower
values of Bi, it has been observed that the determinants are indeed
larger, with a still increasing value for the lower value Bi = 0.1, and an
almost stabilized value for the intermediate Biot number, Bi = 1.0, at
the end of the channel at Zf = 5. Fig. 1b illustrates the reduced
sensitivity coefficients for each of the three parameters obtained
with Bi = 1.0. This figure indicates that the estimation of the Biot
number should not pose difficulties, because its sensitivity coeffi-
cient is large and linearly independent with respect to the others. On
the other hand, the sensitivity coefficients with respect to the two
accommodation coefficients are small and linearly dependent, so
that the simultaneous estimation of these two parameters may not
be possible, unless an informative prior is provided for at least one of
them. In fact, an initial attempt of estimating the three parameters
was performed by providing a priori information in the form of
uniform probability distribution functions for all three parameters,
within the admissible minimum and maximum values intervals
for each parameter. It was then observed that, especially for the
parameter (,, more informative prior would be required for
achieving convergence in the estimation procedure. Fortunately,
a priori information for both ¢, and Bi can in principle be obtained for

Br=2.0 (exact)

w4

f

states states
10000 20000 30000 40000 30000 10000 20000 30000 40000 30000
C Bi Bi=1.0 (exact)
10 o o e o s s s e e e s e
8
6
4
2
states
1000 2000 3000 4000 3000

Fig. 2. (a) Markov chain evolution for parameter §, for the base case. (b) Markov chain evolution for parameter g, for the base case. (c) Markov chain evolution for parameter Bi for

the base case.
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Fig. 3. (a) Bulk temperature distribution as computed with exact (solid line) and
estimated (dashed thick line) parameters for the base case. (b) Local Nusselt number
distribution as computed with exact (solid line) and estimated (dashed thick line)
parameters for the base case.
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Table 3

Estimated parameters values with 50,000 states in Markov chains (neglecting first
10,000 states for the chains burn in) and the corresponding 95% confidence intervals
for different initial guesses (equal to minimum limits).

Parameter Exact Initial Interval Estimated  Min. Max.
with 95%  with 95%

Gy 1.5 1 [1, 5] 1.539 1.305 1.803

B¢ 2.0 1 [1, 5] 2.011 1.870 2.143

Bi 1.0 0.1 [0.1,10] 1.000 0.997 1.003

most experimental conditions, by utilizing pressure and mass flow
rate measurements to approximate the slip coefficient and by
employing classical correlations for estimating the external heat
transfer coefficient, respectively. We have then proceeded to the
analysis of the inverse problem by providing normal probability
distributions as priors for these two parameters (6, and Bi), while
maintaining the uniform probability distribution as prior for §;in the
interval [1,5]. The Gaussian priors for $, and Bi were initially assumed
with means at the exact values and 10% standard deviations.
However, larger standard deviations were also examined in order to
further challenge the convergence behavior of the Markov chains, as
described below.

We first illustrate the Markov chains for each of the three
parameters for the base case, involving Gaussian priors for 8, and
Bi with 10% standard deviations. In this case, the chains were started
from the average values between the admissible minimum and
maximum limits (Table 2). Fig. 2a—c illustrate the evolution of the
Markov chains (up to 50,000 states) for the estimation of the three
parameters, f,, 8¢, and Bi, respectively. Also shown in these figures
are the straight lines that correspond to the admissible minimum
and maximum limits for each specific parameter, while the initial
values were taken as the averages of these two values. One may
clearly observe that the Markov chain for the parameter Bi has
adistinguished behavior of a very fast convergence, in comparison to
the other two parameters, requiring less than 1000 states and for this
reason this particular plot is reduced to only 5000 states to allow for
this verification. The slip boundary condition coefficient, (,, appears

2 F¢=2.0 (exact)

N —— ——— —— ——— ——
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Fig. 4. (a) Markov chain evolution for parameter g, for different initial guesses (lower limits). (b) Markov chain evolution for parameter g, for different initial guesses (lower limits).

(c) Markov chain evolution for parameter Bi for different initial guesses (lower limits).
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Fig. 5. (a) Markov chain evolution for parameter §, for 20% standard deviation in the prior's distributions. (b) Markov chain evolution for parameter g, for 20% standard deviation in
the prior's distributions. (c) Markov chain evolution for parameter Bi for 20% standard deviation in the prior's distributions.

Table 4

Estimated parameters values with 50,000 states in Markov chains (neglecting first
10,000 states for the chains burn in) and the corresponding 95% confidence intervals
for 20% standard deviation in the priors distributions.

to be the most difficult one to estimate in the present situation, as
also indicated by the respective sensitivity analysis (Fig. 1b). Table 2
summarizes the input data and illustrates not only the estimated
values, after neglecting the first 10,000 states in each chain, but also
the minimum and maximum values of the 95% confidence intervals
for such estimated parameters. Even for the least sensitive param-
eter, (y, the exact value lies within the confidence intervals, though it
presents the widest interval among the three estimated parameters.
Fig. 3a,b illustrates the excellent agreement of the bulk temperature
and local Nusselt number distributions, respectively, as obtained
with the exact and estimated values for the parameters, with the
exact curves in solid thin lines and the curves obtained with the
estimated parameters drawn with dashed thicker lines.

(3]

states
10000 20000 30000 40000 50000

Parameter Exact Initial Interval Estimated  Min. Max.
with 95%  with 95%
By 1.5 3 [1, 5] 1.629 1.187 2.110
By 2.0 3 [1,5] 2.046 1.850 2234
Bi 1.0 5.05 [0.1,10] 1.000 0.997 1.003
az, Bv=1.5 (exact) b
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Fig. 6. (a) Markov chain evolution for parameter §, for 5% uncertainty in temperature measurements. (b) Markov chain evolution for parameter §; for 5% uncertainty in temperature
measurements. (c) Markov chain evolution for parameter Bi for 5% uncertainty in temperature measurements.
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Table 5

Estimated parameters values with 50,000 states in Markov chains (neglecting first
10,000 states for the chains burn in) and the corresponding 95% confidence intervals
for 5% uncertainty in temperature measurements.

Table 6

Estimated parameters values with 50,000 states in Markov chains (neglecting first
10,000 states for the chains burn in) and the corresponding 95% confidence intervals
for a total of 100 temperature measurements.

Parameter Exact Initial Interval  Estimated Min. Max. Parameter Exact Initial Interval Estimated  Min. Max.
with 95%  with 95% with 95%  with 95%

By 1.5 3 [1, 5] 1.483 1.223 1.779 Gy 1.5 3 [1, 5] 1.474 1.211 1.757

B¢ 2.0 3 [1, 5] 2.001 1.430 2.557 B¢ 2.0 3 [1, 5] 1.972 1.529 2.400

Bi 1.0 5.05 [0.1,10] 1.001 0.983 1.019 Bi 1.0 5.05 [0.1,10] 1.000 0.989 1.011

The next case considered is aimed at analyzing the effect of quite
different initial guesses for the three parameters, and as an extreme
choice, the minimum admissible values were employed for all of
them. Fig. 4a—c illustrate the evolution of the Markov chains (up to
50,000 states) for the estimation of the three parameters, with the
same input data as the base case, but with such different starting
points. The chains again show an excellent convergence behavior
with the estimated values and corresponding confidence intervals
shown in Table 3, which are very close to those achieved in the base
case previously shown.

Then, we attempt to illustrate the effect of increasing the stan-
dard deviation of the average values informed as priors for the two
coefficients 8, and Bi, now markedly increased to 20%, returning to
the initial guesses provided by the average values of the admissible
limits as for the base case. From Fig. 5a—c, we can notice that the
convergence of the Markov chains has now been noticeably affected,
especially for the slip coefficients 8, and g;. For §, it is apparent that
the burn in period seems to require a larger number of states (around
25,000 in this example). This behavior is also evident from the worst
estimated values in Table 4, together with the wider confidence
intervals, especially for the slip boundary condition coefficients.

Another variation of the base case is considered now by increasing
the uncertainty of the simulated temperature measurements to 5%,
while returning to the Gaussian priors for ¢, and Bi with means at the
exact values and 10% standard deviations. It is interesting to observe
from Fig. 6a—c that the estimation of g, is not markedly affected by

a 3, 2,=1.5 (exact)

|

w4

[3¥]

C Bi

to 4+ O o0

states
10000 20000 30000 40000 30000

increasing the measurement errors. On the other hand, the conver-
gence behavior of the chain for §; is clearly altered, with larger
amplitudes of oscillation, though still showing a convergence
pattern. The Biot number is again the least sensible parameter to the
uncertainty of the measurements, with an excellent convergence
behavior in its Markov chain. Table 5 also reflects such facts, with
a larger confidence interval for the temperature jump coefficient, (;.

Finally, we examine the influence of reducing the number of
experimental measurements by one order of magnitude, bringing
the total number down to 100 points along the channel wall,
as might be eventually required by resolution limitations of the
specific thermographic equipment with respect to the micro-
channel length (see Fig. 7a—c). In this case, it has also been assumed
to have Gaussian priors for §, and Bi with 10% standard deviations.
After inspecting Fig. 7a—c, one may conclude that the §; Markov
chain convergence is the one most noticeably affected, in compar-
ison to the base case where a total of 1000 measurement points have
been made available. Clearly, larger amplitudes on the §; Markov
chain oscillations can be observed, while the Markov chains for the
other two parameters do not present an evident variation with
respect to those presented in Fig. 2a—c. The reduced number of
measurement points similarly affects the width of the confidence
interval for the parameter (;, but again the estimated value remains
quite reasonable, as observed from Table 6. The estimation of the
other two parameters is less affected by the reduction of experi-
mental observations.

(]

states
10000 20000 30000 40000 50000

Bi=1.0 (exact)
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Fig. 7. (a) Markov chain evolution for parameter §, for a total of 100 temperature measurements. (b) Markov chain evolution for parameter (; for a total of 100 temperature
measurements. (¢) Markov chain evolution for parameter Bi for a total of 100 temperature measurements.
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4. Conclusions

Inverse problem analysis of laminar forced convection within
micro-channels has been undertaken, focusing on the identification
of the momentum and thermal accommodation coefficients for
gas flow within the slip-flow regime, together with the usually
unknown Biot number for the walls heat exchange with the external
environment. The aim is to demonstrate computational tools for the
simultaneous estimation of these critical parameters in modeling
heat and fluid flow in micro-channels, under actual operating
conditions of the associated micro-systems. Also, the idealized
experimental setup is based solely on temperature measurements of
the external wall surface, as obtainable by infrared thermographic
measurements. The Integral Transform method was employed
in the direct problem solution, avoiding cumbersome functional
representations in the original eigenfunction expansions by adopt-
ing a hybrid numerical-analytical solution for the related eigenvalue
problem, implemented via the Generalized Integral Transform
Technique (GITT). This combination of approaches provides a robust,
precise and computationally fast solution of the direct problem, as
required for the intensive computational inverse analysis.

A Bayesian approach of parameter estimation is applied and the
unknown parameters are estimated with a Markov Chain Monte Carlo
(MCMC) method, through the implementation of the Metropolis-
Hastings algorithm. The Bayesian approach permits to rigorously take
into account a priori information available for the parameters, such
as from previous experimental runs, or even from other experimental
setups or theoretical predictions. Thus, a priori information usually
available for the slip-flow boundary condition coefficient and for the
Biot number are employed in the proposed estimation procedure,
here considered in the form of Gaussian distributions. For the other
parameter, the temperature jump boundary condition coefficient,
a non-informative uniform distribution was used as prior. The results
obtained with simulated measurements containing Gaussian random
errors revealed the accuracy and robustness of the present estimation
approach.
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